Language Modelling of Constraints for Text Clustering
نویسندگان
چکیده
Constrained clustering is a recently presented family of semisupervised learning algorithms. These methods use domain information to impose constraints over the clustering output. The way in which those constraints (typically pair-wise constraints between documents) are introduced is by designing new clustering algorithms that enforce the accomplishment of the constraints. In this paper we present an alternative approach for constrained clustering where, instead of defining new algorithms or objective functions, the constraints are introduced modifying the document representation by means of their language modelling. More precisely the constraints are modelled using the well-known Relevance Models successfully used in other retrieval tasks such as pseudo-relevance feedback. To the best of our knowledge this is the first attempt to try such approach. The results show that the presented approach is an effective method for constrained clustering even improving the results of existing constrained clustering algorithms.
منابع مشابه
Natural scene text localization using edge color signature
Localizing text regions in images taken from natural scenes is one of the challenging problems dueto variations in font, size, color and orientation of text. In this paper, we introduce a new concept socalled Edge Color Signature for localizing text regions in an image. This method is able to localizeboth Farsi and English texts. In the proposed method rst a pyramid using diff...
متن کاملTopic-based mixture language modelling
This paper describes an approach for constructing a mixture of language models based on simple statistical notions of semantics using probabilistic models developed for information retrieval. The approach encapsulates corpus-derived semantic information and is able to model varying styles of text. Using such information, the corpus texts are clustered in an unsupervised manner and a mixture of ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملHierarchical Agglomerative Clustering of English-Bulgarian Parallel Corpora
Most multilingual parallel corpora have become an essential resource for work in multilingual natural language processing. In this article, we report on our work using the hierarchical agglomerative clustering (HAC) technique to cluster multilingual parallel text on web contents. A clustering algorithm taking constraints from parallel corpora potentially has several attractive features. Firstly...
متن کاملWord clustering with parallel spoken language corpora
In this paper we introduce a word clustering algorithm which uses a bilingual, parallel corpus to group together words in the source and target language. Our method generalizes previous mutual information clustering algorithms for monolingual data by incorporating a statistical translation model. Preliminary experiments have shown that the algorithm can e ectively employ the constraints implici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012